WEDNESDAY 4/3 | e Break – Annapolis Atrium ry Lecture: Keith Brown, "Extrer Discussion – Regatta Ballroom. n – Annapolis Atrium tta A (MS1) matic Discovery and | n Hurley– Regatta Ballroom "Accelerated Science Through Autonomous I me Mechanics Using a Self-Driving Lab" – Reg Moderated by Justin Wilkerson and Debjoy I Regatta B (MS2) | gatta Ballroom | | |---|--|--|--| | e Break – Annapolis Atrium ry Lecture: Keith Brown, "Extrer Discussion – Regatta Ballroom. n – Annapolis Atrium tta A (MS1) matic Discovery and | me Mechanics Using a Self-Driving Lab" – Reg
. Moderated by Justin Wilkerson and Debjoy I | gatta Ballroom | | | ry Lecture: Keith Brown, "Extrer
Discussion – Regatta Ballroom.
n – Annapolis Atrium
tta A (MS1)
matic Discovery and | . Moderated by Justin Wilkerson and Debjoy I | | | | Discussion – Regatta Ballroom. n – Annapolis Atrium tta A (MS1) matic Discovery and | . Moderated by Justin Wilkerson and Debjoy I | | | | n – Annapolis Atrium
tta A (MS1)
matic Discovery and | | wance | | | tta A (MS1)
matic Discovery and | Pagatta P (MS2) | | | | cterization of Materials Across
ositions and Structures (Ilia
rov, Chris Bartel, Rodrigo
s, Ellad Tadmor) | High-throughput Materials Discovery for Extreme Conditions (Chris Haines, Ankit Srivastava) | Regatta C (MS12) Mechanics and Manufacturing of Architected and (Multi-)Functional Materials (Jochen Mueller, Jamie Guest, Stavros Gaitanaros) | Surgeon Meeting Room (MS5) Advances in Experimental Techniques for Extreme Environments (Arezoo Zare, Dimitrios G. Giovanis, Jacob M. Diamond, Belinda P. Johnson) | | IST-JARVIS Infrastructure for
driven Materials Design (Kamal
dhary) | Deformation mechanisms and stress triaxiality in spall failure in niobium: a molecular dynamics study (Alejandro Strachan, William Zummo, Chunyu Li) | Multiscale Characterization of
Rotating-Square Auxetics under
Impact Conditions (Behrad Koohbor ,
George Youssef, Subramani
Sockalingam, Michael Sutton) | The Ejecta Enigma: Suspect Codes or Deficient Physics? (Sidney Chocron , James D. Walker, Don Grosch) | | matic discovery and
cterisation of two-dimensional
als by first-principles calculations
Boland) | High-throughput design, synthesis, and characterization of refractory high entropy alloys (RHEAs) (Eli Norris , Cafer Acemi, Brent Vela, William Trehern, Raymundo Arroyave, Ibrahim Karaman) | Programming mechanical voxel interface properties in extrusion 3D printing (Daniel Ames , Sarah Propst, Aadarsh Shah, Jochen Mueller) | | | Fit: An Integrated Platform for
ng and Deploying Machine
ng Interatomic Potentials at
(Stefano Martiniani) | Bayesian convolutional neural networks for stress field prediction and uncertainty quantification in solid mechanics (George Pasparakis , Michael Shields, Lori Graham Brady) | Application of Material Point Methods
to Objects with Complex Geometries
(Duan Zhang , Kyle Perez, Paul
Barclay, Jiajia Waters) | Single-Shot Imaging of Void-Shockwave
Interactions in Extreme Conditions
(Daniel Hodge , Arianna Gleason,
Richard Sandberg, Andrew Leong,
Silnia Pandolfi, David Montgomery) | | al Genome: symmetry-based
al property testing of interatomic
ials (Ilia Nikiforov , Ellad
or) | High-Throughput Rapid Experimental Alloy
Development (HT-READ) via Additive
Manufacturing and Automated Measurement
(Kenneth Vecchio, Haoren Wang) | Tailorable Piezoelectric and Flexoelectric Output of Polymer-Metal Particle Composites (Ju Hwan Shin , Min Zhou) | Shock-induced ultrafast dislocations observed by in-situ X-ray radiography using an X-ray Free Electron Laser (Kento Katagiri, Leora Dresselhaus-Marais) | | M: A user-friendly environment elecular and materials simulation achine learning (Paul Sax e) | Automatic Differentiation in Dynamic
Topology Optimization (Kevin Korner ,
William Schill, Jonathan Belof, Julian Anrej,
Brandon Talamini) | Bistable rotational mechanisms for morphing wings in unmanned aerial vehicles and beyond (Kaveh Barri ,Jochen Mueller) | | | | Batch Active Learning Approach in Material
Genomics: A Focus on Energetic Materials
(Ozge Ozbayram , Maruthi Annamaraju,
Daniel Olsen, Min Zhou, Lori Graham-Brady,
Surya Kalidindi) | Additive manufacturing of continuous gradients to prevent nodal failure and improve energy absorption in lattice structures (Sarah Propst, Jochen Mueller) | Development of the tamped RMI method and application to Au, Pt, and Mo dynamic yield strength measurements (Travis Voorhees , Athena Padgiotis, Vincent Garcia, Stacy Guo, Benjamin Zusmann, Tracy Vogler) | | | | | Guo, Denjamin Zusmann, Tracy vogier) | | e Break – Annapolis Atrium | <u> </u> | | Guo, Denjamin Zusmann, Tracy vogler) | | | | | | | | Systematic Discovery and
Characterization of Materials Across
Compositions and Structures (Ilia
Nikiforov, Chris Bartel, Rodrigo
Freitas, Ellad Tadmor) | High-throughput Materials Discovery for Extreme Conditions (Debjoy Mallick, Michael Shields) | Mechanics and Manufacturing of
Architected and (Multi-)Functional
Materials (Jochen Mueller, Jamie
Guest, Stavros Gaitanaros) | Advances in Experimental Techniques for Extreme Environments (Arezoo Zare, Dimitrios G. Giovanis, Jacob M. Diamond, Belinda P. Johnson) | | |---------------|--|--|---|---|--| | 3:30-
3:50 | Assessing the Role of Crystal Structure in Models of Magnetic Material Properties (Nam Le , Elizabeth Pogue, Michael Pekala, Anna Langham, Georgia Leigh, Mitra Taheri) | Recent Progress in the BIRDSHOT Center (Raymundo Arroyave) | Advancing Endovascular Interventions: Magnetic-Activated Metastructures with Negative Poisson's Ratio for Optimized Vascular Device Conformance (Shikui Chen, Ran Zhuang, Siquan Sun, Apostolos Tassiopoulos, Chander Sadasivan, Xianfeng Gu) | Laser ablation depths in aluminum from ultrafast x-ray diffraction (Sophie Parsons , Michael Armstrong, Harry Radousky, Farhat Beg) | | | 3:50-
4:10 | Automating materials synthesis with robotics, DFT, and machine learning (Nathan Szymanski) | Al-assisted statistical analysis of fragmentation response of heterogeneous material fields to dynamic loading (Reza Abedi , Colin Furey, Farhad Pourkamali-Anaraki, Giang Huynh, Alireza Amirkhizi, Christopher Hanson) | Shock Dynamics of Architected
Materials (Stavros Gaitanaros ,
Shengzhi Luan, James Guest) | Geometric scaling laws: From microparticle to macroscale projectile impact testing of materials (Ramathasan Thevamaran Nicholas Jaegersberg, Jizhe Cai) | | | 4:10-
4:30 | Towards autonomous electrical characterization of oxide materials and devices for extreme operating environments (David Febba , Kingsley Egbo, Jake Huang, Ryan O'Hayre, Andriy Zakutayev) | Combinatorial synthesis and high throughput, high temperature mechanical characterization of refractory alloys (Sal Nimer , Alex Lark, Li Ma, Victor Leon, Jared Wormley, Christian Sanjurjo-Rodriguez) | Design of material architecture in
structural batteries through topology
optimization (Yakov
Zelickman, Jamie Guest) | | | | 4:30-
4:50 | MAXIMA: A new instrument for high-
throughput microstructural
characterization of materials (Michael
Wall , Timothy Long, Todd Hufnagel,
Robert Drake) | Similarity Metrics for Real-Time Analysis of High Energy X-Ray Diffraction Data (Timothy Long , Michael Wall, Todd Hufnagel) | Decomposing Energy Dissipation Contribution in High-Throughput Impact of Architected Materials (Carlos Portela, Thomas Butruille, Joshua Crone) | Automated high throughput laser driven flyer impact experiments for spall strength evaluation (Piyush Wanchoo, Heyun Wang, Anuruddha Bhattacharjee, Axel Krieger, K.T. Ramesh) | | | 4:50-
5:10 | | Chemical and Microstructural Origins of the Mechanical Properties of CoCrFeNiVAI FCC Complex Concentrated Alloys (Wenle Xu , Daniel Salas, James Paramore, Brady Butler, Raymundo Arroyave, Ibrahim Karaman) | | Seeing inside shocked plastic-bonded explosives (Dana Dlott) | | | 5:10-
5:30 | | High throughput screening of semicoherent metallic interface energy for data set augmentation and physics-based machine learning alloy design (Ben Szajewski, Daniel Magagnosc, Efrain Hernandez, Heather Murdoch, Krista Limmer, Matthew Guziewski) | | | | | 5:45 | Poster Session / Reception – Annapolis Atrium | | | (5:30-5:50pm) Characterizing the Effect
of Polarization-Dependent Loss (PDL)
on Photon Doppler Velocimetry (PDV)
Systems using the Muller-Stokes
Method (Ren Hong) | | | 7:15 | Dinner on your own | | | | | ## THURSDAY 4/4 | 00 | Plenary Lecture: Kamal Choudhary, Ph.D., "JARVIS-Leaderboard: Large Scale Benchmark of Materials Design Methods" – Regatta Ballroom | | | | | |-----------|---|---|--|---|--| | :00 | Coffee Break – Annapolis Atrium | | | | | | :30 | Plenary Lecture: Christopher Stiles, Ph.D., "Advancing Closed-Loop Al-Driven Materials Discovery" – Regatta Ballroom | | | | | | :30 | Panel discussion – Regatta Ballroom. Moderated by Morgana Trexler | | | | | | :00 | Lunch – Annapolis Atrium | | | | | | | Regatta A (MS10) Al-Guided Discovery and Design of New Extreme Materials (Morgan Trexler, Leslie Hamilton, Chris Stiles, Elizabeth Reilly) | Regatta B (MS6) Damage and Failure at High Strain Rates (Cristophe Czarnota, José A. Rodríguez-Martínez) | Regatta C (MS3) Advances in automated, high- throughput, and small-scale characterization of high strain-rate phenomena (Debjoy Mallick, Suraj Ravindran, Ankit Srivastava, Justin Wilkerson) | Surgeon Meeting Room (MS8) Electronic Material and Devices under Extreme Environment (Hamed Attariani) | | | 00-
20 | Ensemble models outperform single model uncertainties and predictions for operator-learning of hypersonic (Victor Leon, Noah Ford. Honest Mrema, Jeffrey Gilbert, Alexander New) | In-Situ Imaging of Spall Fracture (Jacob Diamond , Justin Moreno, Lily Zhao, K.T. Ramesh) | Development of Novel Laser-Driven
Ballistic Test Methodology (Matt
Barsotti, Eddie O'Hare, Alex Lakocy,
Sidney Chocron, Daniel Portillo,
Michael Heim) | Study of GaN material degradation und
Enhanced Thermal Stress through
inhouse fabricated 400nm Gate
(Dipendra Singh Rawal) | | | 20-
40 | Deep learning framework for phase prediction of refractory multi-principal element alloys (Ali Shargh , Christopher Stiles, Jaafar El-Awady) | High-throughput laser-driven micro-flyer spall failure of niobium (Nicolo' Maria della Ventura , Arezoo Zare, Jacob Diamond, Todd Hufnagel, K.T. Ramesh, Daniel Gianola) | Laser-Based High-Throughput Dynamic Mechanical Characterization Materials at the Microscale (Carlos Portela) | | | | 40-
00 | Bayesian Framework for Rapid
Exploration and Establishment of High-
dimensional Microstructure-Property
Relations (Maruthi Annamaraju , Tyler
Ragan, Lori Graham Brady, Min Zhou,
Surya Kalidindi) | Emergence of scale effects in the dynamic loading of a spherical shell. (Alizée Dubois, Yves-Patrick Pelledgrinim, Paul Bouteiller) | Microscale Fatigue Testing Using a
High-Throughput Laser-Driven Shock
Generation Method (Jude Deschamps ,
Yun Kai, Thomas Pexeril, Alexey
Lomonosov, Keith Nelson) | Demonstration of high-temperature operation of β-Ga2O3 MOSFETs with TiW and NiAu metal gates (Nicholas Sepelak , Jeramiah Williams, Daniel Dryden, Ahmad Islam, Weisong Wang, Andrew Green) | | | 00-
20 | An integrated deep learning and numerical optimization framework for multiscale materials modeling and design (Ashwini Gupta , Indrashish Saha, Tamer Zaki, Lori Graham Brady) | Comprehending the dynamic indentation response of elasto-viscoplastic materials (Ankit Srivastava, Zahra Ghasemi, Tiago dos Santos, Jose Rodríguez-Martínez) | Quantifying Dislocation Drag at Ultra-
High Strain Rates with Laser-Induced
Microprojectile Impact (Qi Tang ,
Mostafa Hassani) | Swift Heavy Ion Irradiation in
Semiconductors: A Phase-Field Study
(Ebrahim Ebrahimi, Hamed Attariani) | | | 20-
40 | Global Sensitivity Analysis for Mixed
Design Spaces in Materials Design
(Tuba Dolar , Yigitcan Comlek, Wei
Chen) | Finite Element Simulation of Steady
Shock Waves in Porous Materials:
Exploring the Influence of Void Spatial
Arrangement, Size, and Shape
(Christophe Czarnota, Eyass Massarwa,
Alain Molinari) | Studying Shock-Compressed Metal
Composites Using a High-Throughput
Characterization Technique to Establish
Nanostructure-Performance Correlation
(Siva Kumar Valluri , Edward L.
Dreyzin, Dana Dlott) | Influence of thermal boundary condition
on environmental qualification tests for
printed circuit boards (Paul Perin ,
Gautier Girard Martion Martiny,
Sebastien Mercer) | | | 40
00 | | Visualizing Damage Evolution of
Ceramics with in-situ X-Ray and Visible-
Light Imaging under High-Rate Uniaxial
Compression (Christopher Meredith,
Jeffrey Swab, Nicholas Lorenzo, Andrew
Leong, Bryan Zuanetti) | Measurement of Mechanical Properties
at High Strain Rates by
Nanoindentation (Benjamin Hackett ,
Christopher Walker, P. Sudharshan
Phani, Warren Oliver, George Pharr) | Phase Change Materials as Random-
Access Memory Devices (RAMs) (Maji
Dousti , Mehdi Javanbakht, Weisong
Wang, Hamed Attariani) | | | | Regatta A (MS10) Al-Guided Discovery and Design of New Extreme Materials (Morgan Trexler, Leslie Hamilton, Chris Stiles, Elizabeth Reilly) | Regatta B (MS6) Damage and Failure at High Strain Rates (Cristophe Czarnota, José A. Rodríguez-Martínez) | Regatta C (MS3) Advances in automated, high- throughput, and small-scale characterization of high strain-rate phenomena (Debjoy Mallick, Suraj Ravindran, Ankit Srivastava, Justin Wilkerson) | Surgeon Meeting Room (MS7) Kinematics of defects and defect networks during high strain rate or dynamic loading (Douglas E. Spearot, Khanh Q. Dang, Debjoy Mallick, Suraj Ravindran) | | |---------------|--|---|--|--|--| | 3:30-
3:50 | Closed-loop materials discovery using
generative machine learning (Brandon
Wilfong, Alexander New, Gregory
Bassen, Wyatt Bunstine, Tyrel
McQueen, Christopher Stiles) | Statistical analysis of ductile damage
under impact loading (Corentin
Thouénon , Alizée Dubois, Nicolas Bruzy,
Christophe Denoual, Jacques Besson,
François Willot) | Deformation mechanisms and activation parameters in refractory multi-principal element alloy micropillars across the temperature spectrum: from cryogenic to high-temperature (Nicolo Della Ventura, Carolina Frey, Johann Michler, Tresa Pollock, Daniel Gianola) | Strength of OFHC copper under high
dynamic pressures (Suraj Ravindran ,
Vatsa Gandhi, Guruswami Ravichandran) | | | 3:50-
4:10 | Automated Database Generation of
Multi-Principal Element Alloy Phase-
Specific Mechanical Properties
Measured with Nano-Indentation
(Eddie Gienger , Justin Rokisky,
Denise Yin, Elizabeth Pogue, Bianca
Piloseno) | Machine learned optimization-based modeling for shattering geomaterials (Eric Bryan t, Bozo Vazic, Kane Bennett) | Autonomous Experimentation for Accelerated Scientific Research (Benji Maruyama) | Limiting velocities and supersonic
dislocations in Mg (Khanh Dang , Daniel
Blaschke, Saryu Fensin, Darby Luscher) | | | 4:10-
4:30 | Data-driven Design of High Pressure
Hydride Superconductors using DFT
and Deep Learning (Daniel Wines ,
Kamal Choudhary) | Limitations of regularization techniques for local damage models for dynamic fracture (Kedar Kirane , Taufiq Abdullah) | Rapid quantification of dynamic and spall strength of metals across strain rates (Suhas Eswarappa Prameela) | Length Scales Associated with Dislocation Nucleation during Shock of Single-Crystalline Aluminum (Douglas Spearot , Andre Archer) | | | 4:30-
4:50 | ML Interatomic Potential development
for advanced ceramics in extreme
conditions, (Kimia Ghaffari , Sali
Bavdekar, Douglas Spearot, Ghatu
Subhash) | Understanding Complex Damage Mechanisms and Jetting Phenomena of Additively Manufactured Ti-5553 Lattices under Extreme Shock Environments (Roselyn Hurlow, Alison Kubota. Robert Reeves, Jenny Nicolino, Minta Akin) | Automated split Hopkinson bar
experiments (Suraj Ravindran ,
Vladimir Kornev, Pranav Kartha,
Mouliswar Ramapuram
Ramakumaresan) | Effect of Interfacial bonding on Energy Dissipation in a Particle-Reinforced Ceramic Matrix Composites under Impact Loading (Tyler Ragan, Min Zhou) | | | 4:50-
5:10 | | A weakly non-linear stability analysis for
the prediction of multiple necking during
dynamic extension of round bar (Skander
El Mai , Sébastien Mercier, Alain Molinari) | Dynamic radial expansion and fragmentation of porous metal rings (Jose Rodriguez-Martinez, Anil Kumar, Thomas Virazels, Javier Garcia, Federico Sket, Krishnaswamy Ravi-Chandar) | Strain rate history effects in TWIP and TRIP steels (Jeffrey Lloyd , Danie Magagnosc, Christopher Meredith, Krista Limmer, Daniel Field) | | | 5:10-
5:30 | | Pores collapse and spall fracture: a direct observation using fast ultra-high speed x-ray phase contrast imaging (Thomas Virazels, Jose A. Rodríguez-Martínez, Federico Sket, Bralislav Lukic) | Size Matters: Impact Energy Absorption
Across Five Decades of Length Scale
(Jacob Rogers, Kailu Xaio, Paul Mead,
Charles Pittman, Justin Wilkerson,
Thomas Lacy) | Shock to Detonation Transition Behavior of Energetic Materials with Graded Void Distributions (Daniel Olsen , Min Zhou) | | | 6:00 | Reception - Annapolis Atrium | | | | | | 6:30 | Conference Banquet with speaker: Emeritus Professor Stuart W. "Bill" Leslie – Regatta Ballroom | | | | | ## FRIDAY 4/5 | 8:30 | Breakfast – Annapolis Atrium | | | | | |-----------------|--|---|---|--|--| | 9:00 | Plenary Lecture and Discussion: Angela Stickle, "Design, Impact Modeling, and Results of NASA's Double Asteroid Redirection Test (DART) Mission" - | | | | | | 10:00 | Regatta Ballroom. Moderated by Dr. Dawn Graninger | | | | | | 10:00 | Coffee Break- Annapolis Atrium Regatta A (MS4) Response of Brittle Materials Across Length Scales (Christopher Meyer, Kedar Kirane, Bazle Haque, Sakshi Braroo) | Regatta B (MS9) Hypervelocity Impact Phenomena (Justin Moreno, Matt Shaeffer) | Regatta C (MS11) Biological and Biomimetic Soft Materials (Kshitiz Upadhyay, Reuben Kraft, Amy Dagro) | Figure Eight Double Room (MS13) Advances in Experiments and Computational Modeling to Capture Heterogeneity in Shock Response of Geological Materials and Concrete (Mohmad Mohsin Thakur, Brett Kuwik) | | | 10:30-
10:50 | Using Resin Chemistry to Improve
High Strain Rate Performance in
Glass Fiber Reinforced
Composites (Brendan Patterson) | Exploring the Role of the Background
Atmosphere for Hypervelocity Impact
Flashes (Humberto Caldelas II , Patrick
King, Dawn Graninger, Thomas Rosch,
Matthew Shaeffer, Justin Moreno) | Effects of Different Seat Angles to Disc
Degeneration in Pilots under High-G
Forces (Ann Reyes , Reuben Kraft) | The effect of particle arrangement of granular materials under shock compaction (Dawa Seo , Nitin Daphalapurkar, Darby Luscher) | | | 10:50-
11:10 | Microscopic and macroscopic failure of sintered glass beads: mechanisms and relevance for sandstone surrogates (Brett Kuwik , Ryan Hurley) | Comparison of the high-velocity impact performance of boron carbide ceramics (Konrad Muly , Justin Moreno, Matthew Shaeffer, K.T. Ramesh) | An investigation of lung tissue damage due to direct impact trauma (Oren Petel , MacKenzie Brannen, James Makhlouf, Rohan Banton, John Clayton) | Experimental and numerical investigations of hybrid-fibre engineered cementitious composite panels under contact explosions (Lei Yang) | | | 11:10-
11:30 | Mesoscale Modeling to Predict
Dynamic Impact Response of
Plain Weave Composites
(Christopher Meyer) | Guiding mission design through
hypervelocity impact experiments on
rubble pile asteroids (Min Lê , K.T.
Ramesh, Justin Moreno) | The quest to establish finite element brain strain as a cognitive change indicator (Reuben Kraft , Ritika Menghani, Clayton Bardall, Martin Tanaka) | Mesoscale Framework for Modelling
Rapid Compaction in Granular Materials
(Sohanjit Ghosh , Mohmad Thankur,
Ryan Hurley) | | | 11:30-
11:50 | Spallation in Brittle and Ductile
Materials under Extreme
Conditions: A Multi-Billion Atom
Simulation Study (Killian
Babilotte) | Removing Articles Via In-situ On-orbit
Localized Impacts (RAVIOLI) (Rachel
Hartig) | Modeling Self-Assembling Polymers
Dynamics for Ballistic Self-Sealing
(Thomas O'Connor , William Fergusen) | | | | 11:50-
12:10 | The mechanical response of shock loaded B4C-TiB2 ceramic composite (Scott Turnage) | Vortical flow and the modulation of jetting processes (William Schill) | Mixed finite elements for thermoelastic modeling of biological matter (Tyson Loudon) | | | | 12:10-
12:30 | | Development of combustion two-stage light gas gun (YunHo Kim , Hyunsoo Kim, Inhae Song) | Simulation of High-Level Impulse Noise
Propagation into the Human Head (Gary
Tan , Amit Bagchi, K. Teferra, J. H.
O'Donnell) | | | | 12:30 | Lunch – Annapolis Atrium | | | | | | 1:30 | ADJOURN | | | | |